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Closed-loop Materials Discovery Framework

SISSO Surrogate Model with Uncertainty Estimates

Statistical Consistency of SISSO

What SISSO should we use
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[Bartel, C. J., et al. (2019). New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5(2).]

[Ouyang et al. (2018). SISSO: A compressed-sensing method for low-dimensional descriptors. Phys. Rev. Mater. 2(8)]
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Goal: 

• identify 𝜷∗ = argmin 𝔼 𝑦 − 𝑥𝑇𝜷 2: #𝐼(𝜷) = 𝑘  

• via sparse estimate 𝜷𝑛 with #𝐼(𝜷𝑛) = 𝑘

• computationally efficiently, i.e., in time 𝑂(𝑘𝑛𝑝)

• consistently, i.e., lim
𝑛→∞

 𝑃 𝐼 𝜷𝑛 = 𝐼 𝜷∗ = 1

• with as fast a rate as possible

𝐼 𝜷

𝑝

𝑛

𝑿

≈=

𝒇𝑛 𝒚𝜷𝑛
Given: 

• input matrix 𝑿 ∈ ℝ𝑛×𝑝, output vector 𝒚 ∈ ℝ𝑛 
with rows sampled w.r.t. joint 𝒙, 𝑦 distribution

• prescribed sparsity/complexity 𝑘 ∈ ℕ

• typically assume 𝑘 < 𝑛 ≪ 𝑝

inconsistent

consistent, fast rate

consistent, slow rate
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Best-subset-search:

find 𝜷𝑛
BSS = argmin 𝒚 − 𝑿𝜷 2: #𝐼(𝜷) = 𝑘

consistent (ordinary least squares parameter consistency)

but computationally inefficient 𝑂(𝐶𝑝,𝑘(𝑛𝑘2 + 𝑘3))

𝜷𝑛
BSS

𝑦 = 0.5𝑥1 + 0.5𝑥2

𝑥 ~ 𝑁3(0, 𝐶)

𝐶 =
1 −3/4 0.3

−3/4 1 0.3
0.3 0.3 1

[Hastie et al. (2020) Best Subset, Forward Stepwise or Lasso? Statist. Sci. 35(4)]
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Best-subset-search:

find 𝜷𝑛
BSS = argmin 𝒚 − 𝑿𝜷 2: #𝐼(𝜷) = 𝑘

consistent (ordinary least squares parameter consistency)

but computationally inefficient 𝑂(𝐶𝑝,𝑘(𝑛𝑘2 + 𝑘3))

LASSO:

find 𝜷𝑛
LAS = argmin 𝒚 − 𝑿𝜷 2: 𝜷 1 ≤ 𝑐𝑘

computationally efficient 𝑂(𝑘𝑛𝑝 + 𝑘3)

but inconsistent for non-trivial correlation structure

𝑦 = 0.5𝑥1 + 0.5𝑥2

𝑥 ~ 𝑁3(0, 𝐶)

𝐶 =
1 −3/4 0.3

−3/4 1 0.3
0.3 0.3 1

𝜷 1 = 𝑐2

𝜷2
BSS

𝜷2
LAS

[Hastie et al. (2020) Best Subset, Forward Stepwise or Lasso? Statist. Sci. 35(4)]
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Best-subset-search:

find 𝜷𝑛
BSS = argmin 𝒚 − 𝑿𝜷 2: #𝐼(𝜷) = 𝑘

consistent (ordinary least squares parameter consistency)

but computationally inefficient 𝑂(𝐶𝑝,𝑘(𝑛𝑘2 + 𝑘3))

LASSO:

find 𝜷𝑛
LAS = argmin 𝒚 − 𝑿𝜷 2: 𝜷 1 ≤ 𝑐𝑘

computationally efficient 𝑂(𝑘𝑛𝑝 + 𝑘3)

but inconsistent for non-trivial correlation structure

Thresholded Minimum-Norm Least Squares:

find 𝜷 = argmin lim
𝜆→0+

𝒚 − 𝑿𝜷 2 + 𝜆 𝜷 2
2  

and set 𝛽𝑗
TLS = ൝

𝛽𝑗,  if 𝛽𝑗  among 𝑘 largest

0,  otherwise. 

consistent (although rate can be slow)
computationally inefficient 𝑂 𝑛𝑝2 + 𝑝3  or 𝑂 𝑛2𝑝 + 𝑛3

𝜷 1 = 𝑐2

𝜷2
BSS

𝜷2
LAS

𝑦 = 0.5𝑥1 + 0.5𝑥2

𝑥 ~ 𝑁3(0, 𝐶)

𝐶 =
1 −3/4 0.3

−3/4 1 0.3
0.3 0.3 1
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Best-subset-search:

find 𝜷𝑛
BSS = argmin 𝒚 − 𝑿𝜷 2: #𝐼(𝜷) = 𝑘

consistent (ordinary least squares parameter consistency)

but computationally inefficient 𝑂(𝐶𝑝,𝑘(𝑛𝑘2 + 𝑘3))

LASSO:

find 𝜷𝑛
LAS = argmin 𝒚 − 𝑿𝜷 2: 𝜷 1 ≤ 𝑐𝑘

computationally efficient 𝑂(𝑘𝑛𝑝 + 𝑘3)

but inconsistent for non-trivial correlation structure

Adaptive LASSO

find 𝜶 = argmin lim
𝜆→0+

𝒚 − 𝑿𝜶 2 + 𝜆 𝜶 2
2

and 𝜷′ = argmin 𝒚 − 𝒁𝜷′ 2 + 𝜆𝑘 𝜷′
1

and 𝛽𝑗 = 𝛼𝑗 𝛽𝑗
′ where 𝑧𝑖,𝑗 = 𝛼𝑗 𝑥𝑖,𝑗

consistent (oracle rate in parameter reconstruction)
computationally inefficient 𝑂 𝑛𝑝2 + 𝑝3  or 𝑂 𝑛2𝑝 + 𝑛3

𝜷 1 = 𝑐2

𝜷2
BSS

𝜷2
LAS

𝜷 1 = 𝑐2

𝜷2
BSS = 𝜷2

ADL

[Zou, H. (2006). The Adaptive Lasso and Its Oracle Properties. JASA, 101(476)]
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SIS+SO:

find 𝑆 = {𝑗1, … , 𝑗𝑠} where 𝒙𝑗
𝑇𝒚 ≥ 𝒙𝑗+1

𝑇 𝒚  for 1 ≤ 𝑗 < 𝑝

and apply SO to sub-matrix 𝜷𝑛
SO 𝑿𝑆, 𝒚

computationally efficient for small 𝑠: 𝑂(𝑛𝑝 + 𝑇SO(𝑘, 𝑛, 𝑠))

but inconsistent if 𝑠 too small

…

𝑆

𝑿𝑆 ∈ ℝ𝑛,𝑠 𝜷𝑿\𝑆 ∈ ℝ𝑛,𝑝−𝑠 𝒇 𝒚

≈=

𝑟 = 0.34 𝑟 = 0.39 𝑟 = 0.85 𝑟 = 0.85 𝑟 = 0.85 𝑟 = 0.85

𝑦 = 0.5𝑥1 + 0.5𝑥2
𝑆 = {3, 4, 5, 6}

[Fan, J., Lv, J. (2008) Sure independence screening J. R. Stat. Soc. Ser. B 70(5)]
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…

…

…

𝑆1

𝑿

−=

𝒇1 𝒚𝜷1

𝑆1 𝑆2

𝑆1 𝑆2 𝑆3

2𝑠

3𝑠

𝑠

−=

=

𝒇2 𝒓2

𝒇3 𝒓3

+

𝜷2

𝜷3

SISSO:

set 𝒓1 = 𝒚

for 𝑙 = 1, … , 𝑘: 

    find 𝑆𝑙 = {𝑗1, … , 𝑗𝑠} s.t. 𝒙𝑗
𝑇𝒓𝑙 ≥ 𝒙𝑗+1

𝑇 𝒓𝑙  for 1 ≤ 𝑗 < 𝑝

    set 𝜷𝑙,𝑛
SISSO = 𝜷𝑙,𝑛

SO 𝑿𝑆, 𝒚  with 𝑆 = 𝑆1 ∪ ⋯ ∪ 𝑆𝑙

    and 𝒓𝑙+1 = 𝒚 − 𝑿𝑆𝜷𝑙,𝑛
SISSO

Fundamental Questions:

1. What 𝑠 computationally efficient, i.e., what is 𝑠max st 

𝑇ICL
SO ∈ 𝑂 𝑘𝑛𝑝 + σ𝑙=1

𝑘 𝑇SO 𝑙, 𝑛, 𝑙𝑠max ≤ 𝑐0 + 𝑐1𝑘𝑛𝑝?

2. What SO is consistent / performs best when choosing 
optimal 𝑠 ≤ 𝑠max?

3. Can performance be retained when choosing 𝑠 data-
driven?

[Ouyang et al. (2018) SISSO: A compressed-sensing method for low-dimensional descriptors Phys. Rev. Mater. 2(8)]

[Fan, J., Lv, J. (2008) Sure independence screening J. R. Stat. Soc. Ser. B 70(5)]

+

[Barut et al. (2016) Conditional sure independence screening JASA 111(515)]
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General definition:  𝑠max 𝑘, 𝑛, 𝑝 = max 𝑠 ∈ ℕ: 𝑇ICL(𝑘, 𝑛, 𝑝, 𝑠) ≤ 𝑐0 + 𝑐1𝑘𝑛𝑝

Lasso:   𝑠max
LAS ∈ Θ 𝑝/𝑘2

Best-subset-search: 𝑠max
BSS ∈ Θ 𝑘 𝑝

Adaptive Lasso:  𝑠max
BSS ∈ 𝑂 min Τ𝑝, 3 𝑛𝑝 𝑘 ∩ Ω

3
𝑝/𝑘2

𝑛 = 100, 𝑝 = 105 𝑘 = 5, 𝑝 = 105 𝑘 = 5, 𝑛 = 100



Evaluation over Wide Range of Functions

Ten correlated normal primary inputs

𝒛 ~ N10(𝟎, 𝑪), 𝐶𝑖,𝑗 = 0.8|𝑖−𝑗|

Degree 𝑑 = 1,2, … , 7 multinomial feature maps

Φ𝑑 = 𝝋 ∈ ℕ10: 𝝋 1 ≤ 𝑑

𝑥𝝋 = 𝒛𝝋 = 𝑧1
𝜑1𝑧2

𝜑2 … 𝑧10
𝜑10

𝒙 = 𝑧1
𝑑, 𝑧1

𝑑−1𝑧2, 𝑧1
𝑑−2𝑧2𝑧3, … , 𝑧10

2 , 𝑧1, … , 𝑧9, 𝑧10

Random sparse polynomials
𝑅 = {𝝋 ∈ Φ: 𝜑6 = ⋯ = 𝜑10 = 0}

𝐼∗ ~ Unif 𝐼 ⊆ 𝑅: #𝐼 = 5

𝛽𝑗
∗ ~ 𝑁 0, 𝜎𝑗

−1  for 𝑗 ∈ 𝐼∗ and 𝛽𝑗
∗ = 0 for 𝑗 ∉ 𝐼∗

Ten polynomials per degree

Ten datasets per polynomial

12
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Advantage Retained with Data-driven Selection

In practice: 𝑠∗ unknown and 𝑠 needs to be selected based on fixed 
rule or data, e.g., via cross validation:

• 𝑠cv = argmin σ𝑙=1
10 𝑿𝑙𝜷𝑙 − 𝒚𝑙

2 : 1 ≤ 𝑠 ≤ 𝑠max

• 𝜷𝑙 = 𝜷 𝑿∖𝑙, 𝒚∖𝑙, 𝑠

Note: selection problem hardest for adaptive Lasso

• BSS: only few feasible s and 𝑠 = 𝑠max tends to work well

• Lasso: generally want very small 𝑠 (1 or 2), i.e., slightly relaxed 
matching pursuit works better than Lasso

• Adaptive Lasso: relatively wide range available and need to 
trade off selection of relevant versus irrelevant variables

Result 

• While data-driven selection reduces adaptive Lasso 
performance, marked advantage retained over BSS

• …at least for degree 4 polynomials (limit due to 10x comp. cost)

16
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Conclusion

Summary

• Investigate identification consistency and convergence rates of SISSO 
methods under explicit computational constraint

• Adaptive Lasso appears to be attractive SO, combining consistency with 
relative computational efficiency

• Indeed, outperforms BSS and Lasso in wide range of practical problems 
and retained when using cross validation to choose pool increment

Future

• Theoretical bounds for SISSO success probability

• Translation to materials properties modelling

• Sparse regression estimators with computational cost between ADL and 
BSS, e.g., SCAD, Dantzig Selector, iterative thresholding?

17
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