

SISSO: Selecting Sparsifying Operators from a Computational and Data Efficiency Perspective

Al³-2024, Paphos, Cyprus, 7 Nov 2024

Mario Boley1,2 mboley@is.haifa.ac.il

S*imon Teshuva¹,* Felix Luong¹, Daniel Schmidt¹, Lucas Foppa³, and Matthias Scheffler³

¹Department of Information Systems, University of Haifa ²Department of Data Science and AI, Monash University ³NOMAD Laboratory at FHI of Max-Planck-Gesellschaft

How it all connects 2×2

Ő

Closed-loop Materials Discovery Framework

SISSO Surrogate Model with Uncertainty Estimates

Statistical Consistency of SISSO

What SISSO should we use

SISSO: Symbolic Regression for Materials Properties 3

[Bartel, C. J., et al. (2019). *New tolerance factor to predict the stability of perovskite oxides and halides.* Sci. Adv. 5(2).]

[Ouyang et al. (2018). *SISSO: A compressed-sensing method for low-dimensional descriptors*. Phys. Rev. Mater. 2(8)]

Need to Select Subset via Data Sample 44

Given:

- input matrix $X \in \mathbb{R}^{n \times p}$, output vector $y \in \mathbb{R}^n$ with rows sampled w.r.t. joint x , y distribution
- prescribed sparsity/complexity $k \in \mathbb{N}$
- typically assume $k < n \ll p$

Goal:

- identify $\boldsymbol{\beta}_* = \operatorname{argmin} {\mathbb{E}(y x^T \boldsymbol{\beta})^2 : \#I(\boldsymbol{\beta}) = k}$
- via sparse estimate β_n with $\#I(\beta_n) = k$
- computationally efficiently, i.e., in time $O(knp)$
- consistently, i.e., lim $\lim_{n\to\infty} P(I(\boldsymbol{\beta}_n) = I(\boldsymbol{\beta}_*)) = 1$
- with as fast a rate as possible

There are many methods... that fail to reach goals 5.5

 $y = 0.5x_1 + 0.5x_2$ $x \sim N_3(0, C)$ $C=$ $1 -3/4 0.3$ −3/4 1 0.3 0.3 0.3 1

©2024, Mario Boley

[Hastie et al. (2020) *Best Subset, Forward Stepwise or Lasso?* Statist. Sci. 35(4)]

There are many methods... that fail to reach goals 6.66

Best-subset-search:

find $\beta_n^{\rm BSS} = \text{argmin}\{\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 : \#I(\boldsymbol{\beta}) = k\}$ consistent (ordinary least squares parameter consistency) but computationally inefficient $O(C_{p,k}(nk^2 + k^3))$

LASSO:

find $\boldsymbol{\beta}_n^{\text{LAS}} = \text{argmin} \{ \lVert \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \rVert^2 \colon \lVert \boldsymbol{\beta} \rVert_1 \leq c_k \}$ computationally efficient $O(knp + k^3)$

but inconsistent for non-trivial correlation structure

 $y = 0.5x_1 + 0.5x_2$ $x \sim N_3(0, C)$ $C=$ $1 -3/4 0.3$ −3/4 1 0.3 0.3 0.3 1

[Hastie et al. (2020) *Best Subset, Forward Stepwise or Lasso?* Statist. Sci. 35(4)]

There are many methods... that fail to reach goals

Best-subset-search:

find $\beta_n^{\rm BSS} = \text{argmin}\{\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 : \#I(\boldsymbol{\beta}) = k\}$ consistent (ordinary least squares parameter consistency) but computationally inefficient $O(C_{p,k}(nk^2 + k^3))$

LASSO:

find $\boldsymbol{\beta}_n^{\text{LAS}} = \text{argmin} \{ \lVert \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \rVert^2 \colon \lVert \boldsymbol{\beta} \rVert_1 \leq c_k \}$ computationally efficient $O(knp + k^3)$

but inconsistent for non-trivial correlation structure

Thresholded Minimum-Norm Least Squares: find $\beta = \argmin \left\{ \lim_{n \to \infty} \right\}$ $\lambda \rightarrow 0_+$ $y - X\beta\|^{2} + \lambda \|\beta\|_{2}^{2}$ and set $\beta_j^{TLS} = \begin{cases} \beta_j, & \text{if } |\beta_j| \text{ among } k \text{ largest} \end{cases}$ 0, otherwise. consistent (although rate can be slow) computationally inefficient $O(np^2 + p^3)$ or $O(n^2p + n^3)$

 $y = 0.5x_1 + 0.5x_2$ $x \sim N_3(0, C)$ $C=$ $1 -3/4 0.3$ −3/4 1 0.3 0.3 0.3 1

There are many methods... that fail to reach goals $\frac{8}{8}$

Best-subset-search:

find $\beta_n^{\rm BSS} = \text{argmin}\{\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 : \#I(\boldsymbol{\beta}) = k\}$ consistent (ordinary least squares parameter consistency) but computationally inefficient $O(C_{p,k}(nk^2 + k^3))$

LASSO:

find $\pmb{\beta}_n^{\mathrm{LAS}} = \mathrm{argmin} \{ \|\pmb{y} - \pmb{X}\pmb{\beta}\|^2 \!:\! \|\pmb{\beta}\|_1 \leq c_k \}$ computationally efficient $O(knp + k^3)$

but inconsistent for non-trivial correlation structure

Adaptive LASSO find $\alpha = \argmin \{ \lim_{n \to \infty}$ $\lambda \rightarrow 0_+$ $y - X\alpha\|^2 + \lambda \|\alpha\|^2$ and $\boldsymbol{\beta}' = \mathrm{argmin} \|\boldsymbol{y} - \boldsymbol{Z} \boldsymbol{\beta}'\|^2 + \lambda_k \|\boldsymbol{\beta}'$ 1 and $\beta_j = \big|\alpha_j\big|\beta'_j\>$ where $z_{i,j} = \big|\alpha_j\big|x_{i,j}\>$ consistent (oracle rate in parameter reconstruction) computationally inefficient $O(np^2+p^3)$ or $O(n^2p+n^3)$

[Zou, H. (2006). *The Adaptive Lasso and Its Oracle Properties*. JASA, 101(476)]

SIS+SO:

 $y = 0.5x_1 + 0.5x_2$

find $S=\{j_1,...,j_{_S}\}$ where $\left|\widetilde{\pmb{x}}_j^T\pmb{y}\right|\geq\left|\widetilde{\pmb{x}}_{j+1}^T\pmb{y}\right|$ for $1\leq j< p$ and apply SO to sub-matrix $\boldsymbol{\beta}_n^{\mathrm{SO}}(X_{\scriptscriptstyle S}, \boldsymbol{y})$ computationally efficient for small s : $O(np + T_{SO}(k, n, s))$ but inconsistent if s too small

 $X_{\mathcal{S}} \in \mathbb{R}^{n,s}$ $X_{\setminus \mathcal{S}} \in \mathbb{R}^{n,p-s}$ β

[Fan, J., Lv, J. (2008) *Sure independence screening* J. R. Stat. Soc. Ser. B 70(5)]

f \boldsymbol{y}

SISSO is an Iterative Correlation Learning Procedure 10

SISSO:

set $r_1 = y$

- for $l = 1, ..., k$:
- find $S_l = \{j_1, ..., j_s\}$ s.t. $\left|\widetilde{\boldsymbol{x}}_j^T\boldsymbol{r}_l\right| \geq \left|\widetilde{\boldsymbol{x}}_{j+1}^T\boldsymbol{r}_l\right|$ for $1 \leq j < p$ set $\pmb{\beta}_{l,n}^{\rm SISSO} = \pmb{\beta}_{l,n}^{\rm SO} (X_S, \pmb{y})$ with $S = S_1 \cup \cdots \cup S_l$ and $\bm{r}_{l+1} = \bm{y} - \bm{X}_{\mathcal{S}}\bm{\beta}_{l,n}^{\mathrm{SISSO}}$

Fundamental Questions:

- 1. What s computationally efficient, i.e., what is s_{max} st $T_{\text{ICL}}^{\text{SO}} \in O\big(knp + \sum_{l=1}^{k} T_{\text{SO}}(l, n, ls_{\text{max}})\big) \le c_0 + c_1 knp$?
- 2. What SO is consistent / performs best when choosing optimal $s \leq s_{\text{max}}$?
- 3. Can performance be retained when choosing s datadriven?

[Fan, J., Lv, J. (2008) *Sure independence screening* J. R. Stat. Soc. Ser. B 70(5)] [Barut et al. (2016) *Conditional sure independence screening* JASA 111(515)]

[Ouyang et al. (2018) *SISSO: A compressed-sensing method for low-dimensional descriptors* Phys. Rev. Mater. 2(8)]

Computationally Feasible Pool Increment Values 11

Evaluation over Wide Range of Functions

Ten correlated normal primary inputs $\boldsymbol{z}\sim \text{N}_{10}(\boldsymbol{0},\boldsymbol{C}),$ $C_{i,j}=0.8^{|i-j|}$

Degree $d = 1, 2, ..., 7$ multinomial feature maps \overline{z} $\Phi_d = {\varphi \in \mathbb{N}^{10}: ||\varphi||_1 \le d}$ $x_{\varphi} = z^{\varphi} = z_1^{\varphi_1} z_2^{\varphi_2} ... z_{10}^{\varphi_{10}}$ $\pmb{x} = \left(z_1^d, z_1^{d-1} z_2, z_1^{d-2} z_2 z_3, ..., z_{10}^2, z_1, ..., z_9, z_{10} \right)$

Random sparse polynomials $R = {\phi \in \Phi : \phi_6 = \cdots = \phi_{10} = 0}$ $I^* \sim \text{Unif}(\{I \subseteq R : #I = 5\})$ $\beta_j^* \thicksim \mathit{N}\big(0, \sigma_j^{-1}\big)$ for $j \in I^*$ and $\beta_j^* = 0$ for $j \not\in I^*$

Ten polynomials per degree

Ten datasets per polynomial

^{©2024,} Mario Boley

Adaptive Lasso Best-performing Sparsifying Operator ¹³

Advantage due Larger Range of Available s values 14

Maximum Pool Increment is not Always Optimal 15

Advantage Retained with Data-driven Selection

In practice: s_* unknown and s needs to be selected based on fixed rule or data, e.g., via cross validation:

- $s_{cv} = \text{argmin} \{ \sum_{l=1}^{10} ||X_l \beta_l y_l||^2 : 1 \le s \le s_{\text{max}} \}$
- $\beta_l = \beta(X_{\backslash l}, y_{\backslash l}, s)$

Note: selection problem hardest for adaptive Lasso

- **BSS:** only few feasible s and $s = s_{\text{max}}$ tends to work well
- Lasso: generally want very small s (1 or 2), i.e., slightly relaxed matching pursuit works better than Lasso
- **Adaptive Lasso:** relatively wide range available and need to trade off selection of relevant versus irrelevant variables

Result

- While data-driven selection reduces adaptive Lasso performance, marked advantage retained over BSS
- ...at least for degree 4 polynomials (limit due to 10x comp. cost)

16

Conclusion

Summary

- Investigate identification consistency and convergence rates of SISSO methods under explicit computational constraint
- Adaptive Lasso appears to be attractive SO, combining consistency with relative computational efficiency
- Indeed, outperforms BSS and Lasso in wide range of practical problems and retained when using cross validation to choose pool increment

Future

- Theoretical bounds for SISSO success probability
- Translation to materials properties modelling
- Sparse regression estimators with computational cost between ADL and BSS, e.g., SCAD, Dantzig Selector, iterative thresholding?

